SIDDARTHA INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Design and Analysis of Algorithms (19CS0519) Year &Sem : III B.Tech& I-Sem **Course &Branch: B.Tech** - CSE **Regulation:** R19

UNIT –I INTRODUCTION, DISJOINT SETS

	a	What is asymptotic notation? Explain different types of notations with examples?	[L2][CO1]	[6M]				
1	b	Illustrate an algorithm for (i) Finding factorial of n number (ii)Sum of n natural	[L2][CO1]	[4M]				
		numbers						
2	Si	[L2][CO1]	[12M]					
	a	What do you mean by algorithm? List some of the properties of it?	[L1][CO1]	[6M]				
3	b	Apply the Master's theorem. Solve the following Recurrence relations	[L3][CO1]	[6M]				
		i) $T(n) = 4T(n/2) + n$ i000i) $T(n) = 2T(n/2) + n\log n$						
4	a	Classify the rules of Pseudo code for Expressing Algorithms?	[L2][CO1]	[8M]				
-	b	Solve the given function -If $f(n) = 5n^2 + 6n + 4$ then prove that $f(n)$ is $O(n^2)$.	[L3][CO1]	[4M]				
	a	Explain the collapsing rule for Find algorithm with example.	[L6][CO1]	[6M]				
5	b	Solve the following Recurrence relation	[L3][CO1]	[6M]				
		i) $T(n) = 4T(n/3) + n^{2}ii) T(n) = 6T(n/3) + n^{2} \log n$						
		timate the recurrence relations:	[L6][CO1]	[12M]				
		i) $x(n) = x(n-1) + 5$ for $n > 1$, $x(1) = 0$						
6		ii) $x(n) = 3x(n-1)$ for $n > 1$, $x(1) = 4$						
		iii) $x(n) = x(n/2) + n$ for $n > 1$, $x(1) = 1$ (solve for $n = 2^k$)						
	iv)	$x(n) = x(n/3) + 1$ for $n > 1$, $x(1) = 1$ (solve for $n = 3^k$)						
7	a	Determine in steps of Union and Find algorithms with example.	[L5][CO1]	[6M]				
	b	Explain space complexity in detail.	[L2][CO1]	[6M]				
	a	Define disjoint sets? Explain different types of disjoint sets operations with	[L2][CO1]	[7M]				
8		examples?						
0	b	Solve the following recurrence:	[L3][CO1]	[5M]				
		i) $T(n)=7T(n/3)+n^2$ ii) $T(n)=3T(n/2)+n$						
9	Ex	plain two types of recurrences in detail with suitable example.	[L6][CO1]	[12M]				
10	De	monstrate Towers of Hanoi with algorithm and example.	[L3][CO1]	[12M]				

UNIT –II BASIC TRAVERSAL AND SEARCH TECHNIQUES,DIVIDE AND CONQUER

1	What is divide and conquer strategy? Explain the working strategy of Binary Search	[L2][CO2]	[12M]
	and find element 60 from the below set by using the above technique: {10, 20, 30, 40,		
	50, 60, and 70}. Analyze time complexity for binary search.		
2	Analyze the working strategy of merge sort and illustrate the process of merge sort	[L4][CO2]	[12M]
	algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13.		

3	[9467] [7621]	[L6][CO2]	[12M]
	$A = \begin{bmatrix} 7 & 8 & 1 & 4 \\ 4 & 3 & 2 & 6 \end{bmatrix} B = \begin{bmatrix} 3 & 9 & 0 & 3 \\ 2 & 5 & 2 & 9 \end{bmatrix}$. Create Stassen's matrix multiplication on A		
	[5302] [3247]		
	and B find the Resultant matrix		
4	a Sort the records with the following index values in the ascending order using quick	[L2][CO2]	[6M]
	sort algorithm. 9, 7, 5, 11, 12, 2, 14, 3, 10, 6.		
	b Write and explain the control abstraction for Divide and conquer.	[L2][CO2]	[6M]
5	Explain the Strassen's algorithm for matrix multiplication and analyze time	[L5][CO2]	[12M]
	complexity.		
6	Explain DFS algorithm and trace out minimum path for DFS for the following	[L5][CO2]	[12M]
Ŭ		[10][002]	[]
	example.		
	H		
	$(A) \xrightarrow{F} (B) \longrightarrow (C) \xrightarrow{G} (G)$		
	$(\mathbf{D} \longrightarrow \mathbf{F} \longleftarrow \mathbf{E} \checkmark$		
7	Summarize an algorithm for quick sort. Provide a complete analysis of quick sort for	[L2][CO2]	[12M]
	given set of numbers 12, 33, 23, 43, 44, 55, 64, 77 and 76.		
8	Elaborate BFS algorithm and trace out minimum path for BFS for the following	[L6][CO2]	[12M]
	example.		
	$(A) \longrightarrow (B) \longrightarrow (C)$		
9	a Compare between BFS and DFS techniques.	[L4][CO2]	[5M]
	b Solve an algorithm for techniques of binary trees with examples.	[L3][CO2]	[7M]
10	Describe Binary search algorithm with the following example	[L2][CO2]	[12M]
IV	5, 9, 17, 23, 25, 45, 59, 63, 71, 89		
	5, 7, 17, 25, 25, тэ, 57, 05, 71, 07		

UNIT –III GREEDY METHOD, DYNAMIC PROGRAMMING

		0112			-)		-					
	Construct an o	optimal soluti	ion fo	r Kna	apsack	probl	lem, v	where	n=7,M=15	and	[L3][CO3]	[12M]
1	(p1,p2,p3,p4,p5,	p6,p7)=(10,5,1	5,7,6,1	8,3)an	d(w1,v	v2,w3,	w4,w5	,w6,w′	7)=(2,3,5,7,1,	4,1)		
	by using Greedy	strategy.										
2	Explain any one	application of	greedy	metho	d with	an exa	ample?)			[L2][CO3]	[12M]
	Elaborate job sequencing with deadlines by using greedy method where given the jobs,								[L6][CO3]	[12M]		
	their deadlines and associated profits as shown below. Calculate maximum earned											
	profit.											
•									1			
3		Jobs	J1	J2	J3	J4	J5	J6				
		Deadlines	5	3	3	2	4	2				
		Deaumes	5	5	5		4	<u> </u>	-			
		Profits	200	180	190	300	120	100				
1	a Explain in de		dy me	thod ar	d its a	nnlicat	ions				[] 2][CO3]	[6 M]
4		etail about gree algorithm for	•								[L2][CO3] [L4][CO3]	[6M] [6M]

		-	
	Construct an algorithm for All pairs of shortest path and calculate shortest path between all pairs of vertices by using dynamic programming method for the following graph.	[L6][CO3]	[12M]
5			
	Apply the minimum spanning tree of the following graph using Kruskals algorithm and prims algorithm .	[L3][CO3]	[12M]
6	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $		
7	Explain 0/1 knapsack problem by using dynamic programming with an examples.	[L2][CO3]	[12M]
	Analyze the minimum cost tour forgiven problem using travelling sales person	[L4][CO3]	[12M]
	Concepts.		
8	$\begin{array}{c} 20 \\ 15 \\ 9 \\ 3 \\ 12 \end{array}$		
9	Build any one application of dynamic programming with an example.	[L6][CO1]	[12M]
10	Discuss Optimal binary search tree with an example?	[L2][CO3]	[12M]

UNIT –IV BACKTRACKING,BRANCH AND BOUND

<u> </u>						
1	Explain sum of subsets by using backtracking with an example.	[L5][CO4]	[12M]			
2	Discuss the Hamiltonian cycle algorithm with step by step operation with example.	[L6][CO4]	[12M]			
3	a Explain the principles of FIFO branch and bound.	[L2][CO4]	[6M]			
3	b Recall the graph coloring. Explain in detail graph coloring with an example.	[L5][CO4]	[6M]			
4	a Explain the properties of LC-search.	[L2][CO4]	[6M]			
4	b Give brief description about the general method of branch and bound.	[L2][CO4]	[6M]			
5	Select any one application of backtracking with an example.	[L3][CO4]	[12M]			
	Construct the LC branch and bound search. Consider knapsack instance n=4 with					
6	capacity M=15 such that pi={10,10,12,18},wi={2,4,6,9}apply LC branch and bound	[L6][CO4]	[12M]			
	technique.					
	Simplify 0/1 knapsack problem and design an algorithm of LC Branch and Bound and					
7	find the solution for the knapsack instance of $n = 4$, $(p1, p2, p3, p4) = (10, 10, 12, 18)$,	[L4][CO4]	[12M]			
	(w1,w2, w3, w4) = (2, 4, 6, 9) and $M = 15$.					
8	Evaluate0/1 knapsack problem using branch and bound with an example.	[L5][CO4]	[12M]			
9	Distinguish in detail 8-queens problem using back tracking with state space tree.	[L4][CO4]	[12M]			
10						
			• =			

UNIT –V NP-HARD AND NP-COMPLETE PROBLEMS

1	Construct the non-deterministic algorithms with example.	[L3][CO5]	[12M]
2	Distinguish between deterministic and non-deterministic algorithms.	[L4][CO5]	[12M]
3	Construct the non-deterministic sorting algorithm and also analyze its complexity.	[L6][CO5]	[12M]
4	Explain the class of P and NP with example?	[L2][CO5]	[12M]
5	Differentiate between NP- complete and NP-hard problems?	[L4][CO5]	[12M]
6	State and explain cook's theorem?	[L2][CO5]	[12M]
7	Estimate the strategy to prove that a problem steps of NP-hard.	[L6][CO5]	[12M]
8	Illustrate the satisifiability problem and write the algorithm.	[L2][CO5]	[12M]
9	Determine the classes NP-hard and NP-complete problem with example.	[L5][CO5]	[12M]
10	With example explain Reduction source problem.	[L4][CO5]	[12M]

Prepared by: Prepared by: Dr.S.Tamilselvan, Dr.R.Elankavi, Mr.Ch.Sivasankar, SIETK